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MOTIVATION OF ANALYTIC THEORY

The analytic theory developed in the main text is a dynamical mean-field one, which focuses on the likelihood

φ ≡ [(ηi + 1)/2] that a given fiber bond is a bulk one. Here ηi ≡ SiSi+1, is a ‘defect variable’: ηi = 1 describes a bulk

(same-color) bond, and ηi = −1 is a defect (unlike-color) one. We expect a mean-field theory of this nature to be

most accurate when red and blue blocks are added to the fiber with equal likelihood, because, in this limit, the Ising

model representation of fiber energetics can be written in the noninteracting (space-independent) form H = −J∑
i ηi.

To derive Eqns. (1) and (2) of the main text, we argue as follows. At any instant, the end of the fiber is either red or

blue. Regardless, the next block added is of matching color with probability 1/2, and so we expect bulk domains to

grow with rate c/2. We expect bulk domains to shrink with rate φe−βεs : the factor φ ensures that the terminal bond

is a bulk one, and the factor e−βεs contains the energy scale for the bulk interaction. Similarly, we expect the fiber as

a whole to grow with rate c, and to shrink with rate e−βεs (resp. e−βεd) if its rightmost bond is a bulk (resp. defect)

one. These arguments imply the drift velocities for bulk domains and for the fiber given in Eqns. (1) and (2) of the

main text.

DYNAMIC CORRELATION LENGTH

The dynamic correlation length ξ derived from Eq. (3) of the main text is

ξ(c, εs, εd) =
2(eβεs − eβεd)

eβεs + eβεd(c eβεs − 1)−
√

(eβεd − eβεs)
2

+ c2e2β(εs+εd)
(S1)

when εs 6= εd, and ξ = 2 otherwise.

SUPPLEMENTAL FIGURES

Figs. S1– S4 supplement Fig. 1 of the main text; Fig. S5 supplements Fig. 2 of the main text.
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FIG. S1: Dynamic fiber domain length distributions are exponential. We show ρ(`) obtained from simulations (grey lines),

for selected concentrations at and past the phase boundary c = c0, for a set of conditions considered in Fig. 1 of the main text.

Overlaid are analytic estimates of the domain length distribution, ρ(`) = (ξ− 1)−1 exp
[
` ln(1− ξ−1)

]
, where the mean domain

length ξ is obtained from self-consistent mean field theory (Eq. (S1)) (blue). When c = c0 this reduces to the equilibrium

value ξ0 = 1 + exp(β(εs − εd)) (green); when c → ∞ we obtain the random adsorption limit ξ∞ = 2. In all cases the analytic

expressions match the simulation results. Because observed domain length distributions are exponential, we consider only the

mean domain length ξ in Fig. 1 of the main text.
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FIG. S2: Excess free energy δf ≡ f(φ)− f(φ0) per fiber block as a function of concentration c and like-color energy scale εs

(note that εd = 1). Here φ0 is the equilibrium bulk fiber fraction, and φ is its dynamic counterpart, here computed using Eq.

(3) of the main text. The free energy is f(φ) = (εs − εd)(1− φ) + kBT (φ lnφ+ (1− φ) ln(1− φ)); at all points past the phase

boundary, dynamically-generated structures lie higher in free energy than equilibrium ones. An exception occurs when εs = εd,

because there the compositional correlations of the equilibrium structure are equal to those of random mixing.
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FIG. S3: As Fig. 1 of main text, but for the case εd > εs (here εs = 1), giving an effective Ising antiferromagnetic coupling

J = (εs − εd)/2 < 0. In this case the equilibrium structure mimics that of a binary crystal, consisting (in the limit of large

εd) of alternating blue and red blocks. We observe the same breakdown of the quasiequilibrium assumption as for the case

J > 0 (phase boundaries and equilibrium correlation lengths are labeled in the same manner). However, because the numerical

difference between the domain length associated with random mixing (ξ∞ = 2) and equilibrium (ξ → 1 for large εd) is small,

structures grown close to the phase boundary are numerically similar to their equilibrium counterparts.
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FIG. S4: For fixed absolute supersaturation δc ≡ c− c0, the ‘distance’ (ξ0 − ξ)/ξ0 from equilibrium of dynamically generated

fiber structures grows sharply with increasing energy scale εs. Here εd = 1.
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FIG. S5: Simulations performed at the locations specified by the circles in Fig. 2, main text, bear out the analytic prediction

that identical structures are generated along contours (top panel), by growth protocols displaying markedly different degrees

of microscopic reversibility (bottom panel). Σ ≡ N+ + N− is the total number of binding (N+) and unbinding (N−) events

taking place during the assembly of fibers of length L = 2.5 × 104 blocks (∆ ≡ N+ − N− = L is the net number of binding

events). At the phase boundary, fibers grow only diffusively. As a result, ∼ L2 microscopic events are required to generate a

structure of length L. Far from the phase boundary, assembly is much less reversible.
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